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Crowley, James W. (Bachelor’s, Physics & Astronomy)

Spectropolarimetric Inversions of the Quiet Sun throughout Solar Cycle 24

Thesis directed by Prof. Ivan Milic

This project aims to study changes in the physical structure of the solar photosphere through-

out solar cycle 24. To do this, we employ the use of two spectropolarimetric inversion codes com-

bined with high spatial and spectral resolution observations from Hinode/SOT. The two inversion

codes are a Milne-Eddington inversion code and a more complicated, depth-stratified code called

SIR. By applying both inversion codes to the same datasets, we hope to determine whether models

of different complexities are sufficient to find and characterize changes in concluded parameters.

Notably, we focus on changes in the temperature structure and the line-of-sight velocity.
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Chapter 1

Introduction

Because of its proximity, high spatial, spectral and temporal resolution observations of the Sun

allow us allow us to ask and answer fundamental questions, as well as understand and test cutting-

edge models of the Sun and other stars. One of the most important ways this is achievable is through

studying the solar spectrum; because the solar spectrum is formed by light propagating through

the solar atmosphere, inherently embedded in the spectrum is the information about the physical

structure and properties of the Sun. By observing spectral lines and modeling the processes that

form and change the shape of the spectral lines, it’s possible to diagnose physical properties of the

solar atmosphere. By combining models of the solar atmosphere and the atomic data that describes

absorption / emission processes, it is possible to create so called spectropolarimetric inversion codes.

These are computer programs that find the model atmosphere which best fits the observed (generally

polarized) spectrum. This allows us to interpret high resolution spectropolarimetric observations

and, ultimately, map the solar atmosphere in all three dimensions.

An important and well known property of the Sun is the 11-year solar magnetic cycle -

first observed in 1843 by H. Schwabe, the 11-year solar cycle manifests itself through the number

of sunspots, magnetic activity, and solar radiation. Despite being well documented and studied,

predicting in detail the solar cycle, flares, and magnetic activity remains one of the most important

pursuits in solar physics. There’s about as many ways to study the solar cycle as there are to

observe the Sun - from Wolf’s original and simple method of counting sunspot numbers [see e.g.

Clette et al., 2014], to using the polarization of the light to infer the structure of the magnetic field
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[e.g. using inversions, see del Toro Iniesta and Ruiz Cobo, 2016], there are various ways to study

the changing structure of the Sun throughout the magnetic cycle. Understanding and predicting

changes in the magnetic structure of the Sun is hugely important and one of the biggest open

questions in solar physics.

In this project, we look for the systematic changes in the physical structure of the solar

atmosphere throughout solar cycle. To do this, we use high spatial and spectral resolution spec-

tropolarimetric observations of the solar atmosphere, made by the spectropolarimeter onboard

Hinode/SOT solar telescope [Lites et al., 2013]. We focus on the parts of the atmosphere that

exhibit no detectable magnetism and apply multiple inversion codes to the spectropolarimetric

observations. We are mostly interested in the thermodynamic structure, namely the temperature

gradient and the line-of-sight velocity. We discuss the results obtained by the different inversion

approaches but also try to determine whether the resolution of the Hinode and the complexity of

the chosen inversion codes are sufficient to detect and diagnose changes in the solar photosphere

throughout the solar magnetic cycle.



Chapter 2

Background

2.1 Solar Structure & the Solar Cycle

The Sun is a very complicated object, largely due to the wide magnitude of physical pa-

rameters and processes taking place across the radius of the Sun. Investigating the structure of

the Sun requires the application of various methods of observation and modeling. For this reason,

studies of the physical structure of the Sun typically restrict themselves to a specific range of radii,

temperatures, or specific physical processes, which are pieces of a larger picture of the structure of

the Sun.

A property central to the Sun is the Solar Magnetic Cycle: over a roughly 22 year period (two

11-year cycles of maxima and minima), the Sun’s field flips twice back to its original orientation.

This process is explained and modeled via the so-called solar dynamo [e.g. Charbonneau, 2010],

the model of how the Sun generates its tangled and complicated magnetic field. In this model,

a combination of differential rotation speeds (both with depth and latitude) on the Sun and the

processes of charged plasma which make up the Sun cause a winding-up and periodic reversal

of the Sun’s magnetic dipole. During this process, however, the Sun’s magnetic field becomes

tangled, causing regions of large magnetic flux resulting from the field lines passing through the

Sun’s atmosphere.

Throughout the solar magnetic cycle, the tangled magnetic field causes small-scale events like

flares and active regions. Even though large scale changes in the magnetic field are well understood

through the model of the solar dynamo, details and small scale events are still unpredictable,
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Figure 2.1: A diagram of how the solar dynamo explains the winding up of the toirodal fields of
the active Sun, courtesy of Sanchez et al. [2014]

meaning a more complete picture of the Sun throughout the solar cycle is still an important inquiry

in solar physics. This is hugely important issue because flares, coronal mass ejections (CMEs), and

other magnetic events can have measurable and significant effects on Earth, like disrupting satellites

and electronics. Being able to predict and understand the structure of the Sun throughout the solar

cycle is important not just for solar physics but many other branches of science.

In this project, we focus on the physical structure of the Sun’s photosphere; the photosphere

is the layer of the Sun’s atmosphere where the density of particles drops enough so that it becomes

transparent to photons across most wavelengths, allowing them to escape into space with little

interaction. Therefore, this is what is typically meant by the ”surface” of the Sun, and is a

fascinating layer where the negative gradient of density, temperature, and opacity give rise to

the formation of spectral lines. As these properties change with depth and the resulting opacity

decreases, the formed spectral lines reflect the physical condition of the photosphere. By studying

the shape of these lines, like ones seen in Fig. 2.2, it allows us to study the structure of the solar

photosphere.

2.2 Radiative Transfer

Radiative transfer is the theoretical framework through which we can determine how light is

modified as it passes through a material. The centerpiece of it is the equation of radiative transfer,
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which is a mathematical formalization which says the elementary change in the intensity of the light

that enters into that material depends on the absorption, emission, and scattering in the material.

In its full form, the equation of radiative transfer reads:

1

c

∂

∂t
Iλ + Ω̂ · ∇Iλ + (kλ,s + kλ,α)ρIλ = jλρ+

1

4π
kλ,sρ

∫
Ω
IλΩ. (2.1)

Where I is the incoming intensity into a layer of material, the j term describes the emission,

and k describes the scattering, [Chandrasekhar, 1960]. It’s common to rewrite the equation of

radiative transfer in terms of the source function Sλ ≡ jλ
kλ
, and the optical depth, τλ:

dIλ
dτλ

= Iλ − Sλ. (2.2)

with the so-called formal solution that reads:

Iλ = Iλe
−τλ +

∫ τλ

0
S(t)e−tdt. (2.3)

Here the optical depth τλ is defined as:

dτλ = −kλdz. (2.4)

Here kλ is the total absorption coefficient (opacity) at the wavelength λ, given in units of

m−1. The optical depth or optical thickness is a unitless ratio of distance over the length scale

where 1
e of propagating light of a given wavelength is absorbed. This lengthscale is commonly

known as the “mean free path.” The optical depth is dependent on the wavelength of light, as well

as the properties of the material. It’s a useful way of redefining physical depth in an atmosphere

because it allows the RTE to be written in a way that is computationally easier to solve, at

the loss of information about physical depth in the photosphere. The radiative transfer equation is

relatively straightforward to solve if opacities and emissivities are explicitly known everywhere in the

atmosphere and at all wavelengths of interest. To calculate opacities and emissivities, however, we

must involve all the relevant physical processes that result in an absorption, emission or scattering



6

of a photon. For spectral line formation the most important is the absorption of a photon due

to the excitation from a lower to an upper energy level of an atom. This process is known as

spectral line absorption. The inverse process, emission of an excited atom is the spectral line

emission. These processes give rise to the spectral lines in the spectrum of the Sun, but to properly

model the solar radiation we also have to take into account various continuum processes: electron

scattering, photoionization, three body processes, etc. In modern spectrum modeling codes, there

are numerous processes taken into account and calculated by the so called “opacity packages.” To

summarize, to solve radiative transfer equation for a set of wavelengths that describe our spectral

line, we have to go through a substantial calculational effort of computing all the necessary opacity

and emissivity processes and then integrating the equation of radiative transfer, that is, Eq. 2.3.

2.3 Milne-Eddington Model

The Milne-Eddington Model is a widely-used and important simplification of the atmospheric

structure, and one that has been commonly used for the solar photosphere. Up until the past

few decades, limitations on computationally intensive solutions to the RTE restricted solving the

RTE to simpler models - the Milne-Eddington model is probably the most important of these.

However, it is still relevant when it comes to the interpretation of the data or fitting the observed

spectropolarimetric data by a model [Orozco Suárez et al., 2010, Borrero et al., 2011].

In the Milne-Eddington (ME) atmosphere , all physical conditions of the atmosphere are

constant throughout the considered layer (usually photosphere), except the source function, which

is changing linearly with continuum optical depth. The parameters of this model are derived from

the processes which form and shape spectral lines. However they’re not always directly relatable

to physical quantities like temperature, pressure, and abundances.

In the Milne-Eddington model, a spectral line is parameterized by 6 variables, which describe

the shape of the line profile and the source function behavior. These variables are derived from

spectral line formation and broadening processes. The simplicity and broad-scope of the model

means that, even though it’s fast to solve and widely applicable, it has some inherent problems and
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uncertainties, which will also be discussed below. The shape of the spectral line is described by

the line absorption profile, ϕλ, that is taken to be constant with depth. The absorption profile is

the convolution of a Gaussian and a Lorentzian profiles and is called a Voigt profile; The Gaussian

part comes from the random motion of particles in the photosphere, causing Doppler shift, and

the Lorentzian part comes from natural and pressure broadening of atomic energy levels [see, e.g.

Collins, 1989]. Together, the two processes result in a profile which has characteristics from each

constituent part. The line absorption profile is proportional to the probability distribution of the

absorption of light in the given spectral line over the wavelength. It relates wavelength-dependent

optical depth to the continuum optical depth in a very simple way:

τλ = ητ ϕλ(vlos,∆v, a). (2.5)

The line absorption profile is therefore described by three parameters that characterize the

shape of the Voigt function:

• vlos refers to the line-of-sight Doppler velocity, and in the Milne-Eddington model, this

uniquely describes the shift of the line from the central, ”rest” wavelength of the spectral

line.

• ∆v is the micro-turbulent Doppler velocity, characterizes the amount spectral line broad-

ening due to the unresolved Doppler shifts

• a is referred to as the ”line damping”, which describes the processes which broaden the

energy levels of individual particles. This broadens the line profile in a different way than

∆v, and largely effects the wings of the spectral line. In the photosphere it mostly depends

on the gas pressure.

The parameter η is the line strength, defined as the ratio between the opacity due to spectral line

processes, at the line center and the continuum absorption. This value depends the amount of

absorbers that the propagating light encounters, and therefore describes the strength or depth of

the spectral line.
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If we assume the constant line absorption profile and the linear behavior of the source function,

S = a0 + a1τ , Eq. 2.3 yields:

Iλ = a0 +
a1

1 + ηϕλ
. (2.6)

This is a very simple equation that can be used to intuitively understand behavior of solar spectral

lines (e.g. lines formed in the region of higher source function gradient are deeper), but is espe-

cially convenient for devising simple diagnostics method, i.e. spectroscopic or spectropolarimetric

inversions.

2.4 Local Thermodynamic Equilibrium (LTE)

In more general approaches, opacity and emissivity are allowed to vary with depth in the

atmosphere, and are derived from the physical parameters: temperature, velocity, pressure, etc,

that are also depth-dependent. In the photosphere, it is common to assume that the so called local

thermodynamic equilibrium (LTE) approximation holds. In order for LTE to hold, photons and

particles need to be in thermal equilibrium, which allows us to make assumptions about distributions

of particles. For instance, Maxwellian distribution of particle velocities, Saha distribution for

ionization, and Boltzmann distribution for excitation. Despite these simplifications, solving the

full radiative transfer problem is still computationally difficult and requires computer codes to

solve efficiently. In order to solve the equation of radiative transfer, we need the coefficients of

absorption and emission, which depend on the physical condition of the solar atmosphere, and vary

with height and wavelength. Once coefficients of absorption and emission (opacity and emissivity)

are known, solving the RTE yields the outgoing spectra of the Sun. This is the so-called forward

problem. Going the other direction by using the observed spectra to deduce physical conditions of

the Sun is the so-called inverse problem, which is even more computationally intensive, and is the

goal of spectropolarimetric inversions (in short - inversions).
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Figure 2.2: A small section of the solar spectrum, where different shaped lines are visible. The
range of Hinode’s spectropolarimeter is highlighted.

2.5 Spectropolarimetric Inversions

Inversion codes are schemes which combine models of stellar atmospheres, atomic physics and

RTE solvers with a merit-function optimizer in order to determine the model parameters which best

reproduce the observable (in this case, polarized spectra). They’re best understood through contrast

to synthesis codes. Synthesis codes are found across all branches of science: they’re a model of an

observable phenomena where the variables or parameters of the model are used by some relation

or equation to predict what one would observe. In the context of solar spectropolarimetry, this

means using model parameters which correspond to physical conditions of the solar atmosphere, like

temperature, pressure, atomic abundances, and so on, in order to predict what emergent spectra

would be observed. With this picture in mind, it’s easier to understand what is meant by an

inversion code: it works in exactly the opposite direction. Using a observed solar spectra, it finds

the combination of physical parameters which would best reproduce the measured spectra.

This means there’s a couple things required for a working inversion code: first is a model of
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how the physical conditions of the solar photosphere work together to produce spectra, and how

changes in these conditions will change the observables [so called response functions, Ruiz Cobo

and del Toro Iniesta, 1992]. The next is an optimizer, which is able to quickly and efficiently find

the combination of parameters which best reproduce the observable. This is done by defining a

merit function, which mathematically evaluates how closely a model spectra resembles the observed

one, and combining it with a method to step through parameter-space to find the combination of

parameters which minimizes the merit-function.

Although the process sounds straightforward, in practice, there’s countless different ways to

carry about inversions, each with unique advantages and disadvantages. Fundamentally, differences

in inversion methods come from the fact that completely simulating all possible physics occurring

in the solar photosphere is impossible, and simplifications and assumptions are required. Some of

these might include differences in equations of state, the height dependence of different physical

parameters, or different methods to numerically solve the equation of radiative transfer.

For this project, two inversion codes were used. One is a code using a Milne-Eddington

approximation, designed for this project, which fits the Eq. 2.6 to the observed intensity spectrum.

The more complicated (and realistic) scheme is the code called SIR, designed and written by Ruiz

Cobo and del Toro Iniesta [1992]. Contrary to the Milne-Eddington approximation, SIR allows for

depth-dependent temperature, velocity, pressure and the magnetic field. It iteratively modifies the

starting atmosphere until a good fit to the observed spectrum is found. By applying these codes

to the maps of the polarized spectra observed by the Hinode/SOT SP instrument, the inversion

schemes provide maps of the inverted parameters that describe the solar atmosphere. In the case of

the Milne-Eddington inversion, these are maps of the parameters that appear in the Eq. 2.6, while

in the case of SIR, these are the maps of the temperature and velocity at different depths in the

solar atmosphere.



Chapter 3

Data & Methods

3.1 Datasets Selected

In order to characterize and study the quiet (i.e. non magnetic) solar photosphere throughout

the solar cycle, a specific data is needed: as detailed above, we know from our models and laboratory

studies of atomic energy levels that different atomic transitions occur under different physical

conditions. To study the solar photosphere, a well understood transition (that is, spectral line)

”formed” in the photosphere is required. Next, we need consistent data from throughout the solar

cycle, which allows for the study of temporal changes in the photosphere. Additionally, two more

requirements are necessary for our study of the quiet Sun in particular. First, it’s important that

this line is observed with high spectral resolution: the higher spectral resolution we have, the more

detail we have about the shape of the line, allowing inversions with less uncertainty. The other

requirement revolves around the concept of unresolved magnetic flux. It has been shown that

magnetic flux in the photosphere modifies spectral line profiles by changing temperature, intensity,

and other quantities [Criscuoli et al., 2013]. In the context of the quiet Sun, unresolved magnetic

flux refers to the effect when differently-oriented magnetic fields or fields of varying strength in

a single spatial bin (pixel) average together to cause the polarization of the pixel to appear non-

magnetic, when the magnetic flux on scales smaller than resolvable is, in fact, modifying the

spectral line. To minimize the effect of unavoidable unresolved magnetic flux, another requirement

is imposed on the selection of data: we require high spatial resolution. This is because, in order

to characterize non-magnetic regions of the Sun’s surface, it’s critical to be able to identify and
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set aside pixels containing small-scale magnetic elements, and higher spatial resolution limits the

amount of possible unresolved magnetic flux.

For these reasons, datasets observed by the Hinode/SOT SP instrument [Lites et al., 2013]

from throughout the solar cycle were selected. The high spectral (approximately 0.002 nm) and

spatial (0.3 arcseconds, that corresponds to roughly 200 km on the solar surface) resolution of

Hinode spectropolarimeter make it a perfect candidate for this project. Hinode observes two Fe I

absorption lines formed in the solar photosphere, at 630.15 nm and 630.25 nm. These lines have

different magnetic sensitivities of g630.15nm = 1.67 and g630.25nm = 2.50. For this project, the

630.15 nm line was chosen because of its lower magnetic sensitivity. This means that any variations

in the inferred parameters are less likely to be due to magnetic interactions. Additionally, by

focusing on a single line, we eliminate the systematic uncertainty that comes from inverting two

lines simultaneously. When we fit two lines, the noise and errors from both lines influence the

inverted parameters. By focusing on the 630.15 nm line, we focus on non-magnetic influences on

the line shape, as well as reduce systematic uncertainty. Hinode SOT/SP observes the intensity and

the polarization of the light at 112 wavelength points, with spectral sampling of 0.00215 nm. This

leads to datasets of four-dimensional data, where at each (x, y) spatial point has 112 wavelength

points for each of the 4 Stokes components. However, for this project, since it focuses on the

spectral line at 630.15 nm, only the first 60 wavelength components were considered. We also took

polarization of the light into account when inverting the data, but we use the inferred magnetic

field only to filter out unwanted (i.e. magnetic) pixels.

Datasets were selected from the High Altitude Observatory’s Community Spectropolarimetric

Analysis Center (CSAC) data archive. CSAC houses publicly available calibrated Hinode data from

throughout the satellite’s mission. From CSAC’s Hinode archives, a few datasets were stringently

selected - in addition to the requirements listed above, a few more were applied. First, datasets

were selected to be without sunspots and active regions; Secondly, only the datasets near the disk

center were selected (heliocentric radial angle µ >= 0.90). This was done to keep inversions as

simple as possible and not introduce any projection effects.
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Figure 3.1: Example of a Hinode data; Left: continuum intensity observation of Stokes I, Right:
observed normalized spectra of Stokes I for boxed pixel

With these criteria in mind we selected total of three datasets from throughout solar cycle 24.

The first was chosen for its proximity to the solar minima, and was observed on 2008-12-18 around

03:06. Likewise, the second was chosen with the above criteria in mind and to be near the solar

maxima; it was observed on 2014-06-05, around 22:00. Additionally, one more dataset was used

in this project; this was included as part of the verification of results and analysis. This dataset

was observed by Hinode on 9-24-2007 at 19:32:10. It was selected because it was independently

inveterted by H. Socas-Navarro in 2011, [Socas-Navarro, 2011], using an inversion code named called

NICOLE [Socas-Navarro et al., 2015].

3.2 Milne-Eddinton Inversion Code

For this project, a Milne Eddington Inversion code was written in Python programming

language. By applying the Milne-Eddington approximation outlined above (2.6) to the parameters

of the Fe I line at 630.15 nm and defining the merit function as the so called χ2 between the observed

and the calculated spectrum, we created an inversion code by using an optimizer from the SciPy
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Python package, to find the best combination of parameters in each pixel. Here, χ2 is defined as:

χ2 =
1

60

∑
i

(
Iobs − Icalc

σ

)2

. (3.1)

Here Iobs, Icalc and σ denote observed intensity, calculated intensity and the noise (uncertainty) of

the observations, respectively, while the division with 60 represents averaging over all the considered

wavelengths.

Because the ME model uses constant values of parameters throughout the photosphere for

each pixel, it finds a single (average) value for every inverted quantity. This simple model is

computationally easy to run, but any information about depth-dependency is lost. One such effect

is in the Doppler shift of each pixel; without a varying LOS velocity, there is no way to explain

asymmetric lines, like the one in the figure below. In the figure, the ME model has done its best to

find parameters which reproduce the observed profile, but it has no way to account for asymmetric

lines.

Figure 3.2: An asymmetric line profile, unable to be well-fit by a Milne-Eddington atmosphere,
which produces only symmetric inverted spectra.
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Luckily, in the datasets inverted for this project, most observed spectral lines are well ap-

proximated by a symmetric line profile. Additionally, asymmetric line profiles only make a large

difference in quality of inversions (an increase in χ2 greater than 10%) in approximately 5% of

pixels. However, it’s still a disadvantage of the ME atmosphere, which is important to consider.

3.3 SIR/DeSIRe

In 1992, solar physicists B. Ruiz Cobo and J. C. del Toro Iniesta developed a new code to

invert the radiative transfer equation, which allows for the inversion of height-stratified quantities

such as the temperature, magnetic field vector, and line-of-sight velocity [Ruiz Cobo and del Toro

Iniesta, 1992]. This scheme has remained one of the most popular and applicable to the solar

photosphere, and it has been updated and improved with new physics since its creation. It’s

named SIR, which stands for Stokes Inversions based on Response Functions. The power of SIR

over a Milne-Eddington inversion is a more complicated model of the solar photosphere, which

allows the code to invert physical parameters as a function of continuum optical depth, not just

as a single value. An example of this for the temperature of an inverted spectra is shown below in

Fig. 3.3. Recently, a team of researchers have created a python wrapper for SIR, which allows the

inversion of many spectra in a field-of-view from a easier-to-use python script, which then runs the

original SIR code in the background [Gafeira et al., 2021]. This python wrapper is the inversion

code that was used for this project, and all the datasets were inverted both using Milne-Eddington

code and SIR.

3.4 Problems & Solutions with Inversions

Despite the methods to carefully perform and optimize the inversions, they occasionally fail

to find a satisfactory fit. When this happens, additional steps are required to ensure the quality of

inverted parameters. When an inversion does ”fail,” this usually takes one of two forms:

• the code ”can not converge” on a solution to the inversion, or;
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Figure 3.3: Top: An example of a height stratified temperature, inverted via SIR. Bottom: the
corresponding inverted spectra (solid), plotted on-top of the observed spectra (dotted).

• the concluded parameters don’t resemble physically realistic or expected values.

The first can occur for a variety of reasons, usually on the end of the optimizer - maybe the code’s

optimizer hits a maximum number of of allocated steps to get to the best solution, or a starting

parameter set is so far from the best solution that the optimizer doesn’t know which way to step

in parameter-space to get closer. Solutions to inversions failing to converge involve many different

methods, but the most effective solution is to provide the code with an initial solution as close

to the best fitting ones as possible. Other solutions implemented in this project for the problem

of inversions failing to converge include allocating more steps and more time for the code to run,

or re-inverting non-converged spectra using a different optimizer or different step sizes through
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parameter space.

The second problem is much more complicated and harder to solve. It stems from a more

fundamental issue with all inversions, regardless of method or model - it goes by a few names,

but they all refer to the same issue: non-orthogonal parameters, degenerate solutions, or non-

injective mapping of solutions. This means that different combinations of model parameters can

produce identical or nearly identical solutions (here, solutions are inverted line profiles). This

problem is exacerbated by the fact that noise in the observed data, both random and systematic,

can slightly change the observed line profile, which can have huge changes on inverted parameters.

These separate issues both produce a similar outcome for inversion: inverted parameters that don’t

resemble physically realistic or expected conditions on the Sun. By ”expected” we mean: two

very similar spectra result in two very different atmospheric models. There are few reasons for the

existence of the degenerate solutions, but even after removing the observed noise and systematic

errors, one persist: radiative transfer is a non-local process and different depth stratifications can

produce identical spectra.

This issue can be thought of mathematically: the complicated solar model results in many

local-minima in the χ2 hypersurface, as well as many of the resulting local-minima being equally or

nearly equally as good. This means that minimizing techniques, which often work by ”stepping”

through parameter space on the χ2 hypersurface in order to find the minima in χ2, often get stuck

or can not differentiate between different local minima. For this problem, a few different solutions

were implemented and used in varying degrees, with varying effectiveness. The first and most

effective solution is the same one as addressed in the above paragraph about failed convergence:

providing the code with better initial solutions. By providing the code with a solution set of

parameters which is already close to the ”best” solution, it’s less likely to get stuck in local minima

of χ2 because the code needs to travel a smaller distance in the parameter space. This solution

introduces a new problem, however: how to determine a solution set of parameters which is already

close to the ”best” one.

Because the Milne-Eddington inversion code is fast and efficient at inverting spectra, it’s
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possible to perform multiple inversions per spectra in a reasonable amount of time. For this reason,

for the ME inversions we inverted each spectra five times, starting from different, reasonable,

starting parameter sets, and then took the best-fitting inversions. This approach both improved

the quality of fits and eliminated the spread of parameters over unreasonable values, meaning it

seems to have been an effective solution to the problem.

For the SIR inversion code, the solution to the problem of local minima of χ2 and non-

convergence is a little more difficult, because the more complicated solar model means inversions

are more computationally intensive. At first, we tried the same solution with SIR as we did with

the ME inversion: inverting each spectra multiple times from reasonable starting parameters. For

SIR, solutions are atmospheric models, so for each spectra, we inverted each using 7 initial starting

atmospheres. The pre-computed starting atmospheres were example solutions, created by Gafeira

et al. [2021]. However, this was far too computationally intensive, even with parallelization and

running the code with multiple threads at once.

We found that using pre-computed solutions greatly improved χ2 and the agreement of in-

verted parameters between nearby pixels, but that it took far too long to compute if each spectra

was inverted many times. If we used only a single initial solution for every spectra, inversions were

faster, but χ2 got worse - additionally, the resulting parameter maps were much more discontinuous

and less structured than the we expected. (see the left-most plot in the Fig. 3.4). The fact that

adjacent pixels are equally well fit, but parameters between adjacent pixels are not smooth implies

that some pixels still getting stuck in local minima of χ2. We expect the physical structure of the

Sun to be smooth and have no sharp boundaries between adjacent spectra, and if everything goes

correctly, so should the inverted parameters. If the inversions get stuck in local minima of χ2, they

might have equally well fit spectra but have very different inverted parameters.

The solution we developed for this problem is to ”shake up” the input initial solutions, to

start each inversion from slightly different initial solutions without inverting each spectra many

times. By doing this, we hoped to give each spectra more spatially smooth but still realistic

solution to start inverting from. The method we developed to do this is to median filter the
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output atmospheres of each inversion spatially, and use this median-filtered atmosphere for the

next inversion’s initial solution. This way, each spectra receives a small ”nudge” in parameter

space towards the parameters of the surrounding pixels, allowing the inversion to find a more

spatially coherent solution for each spectra. This process can even be repeated multiple times, by

median filtering the output inverted atmosphere from each round of inversions, and using this as

the next initial solution. From our testing, we found that after two rounds of median filtering and

re-inputting these as initial solutions, the benefits plateau off, so for all datasets, this process was

carried out twice. The resulting inversions improve in not only χ2 but also in the spatial coherence

of the resulting atmospheres, as can be seen visually in the more structured and smooth-looking

temperature and χ2 maps below.

An additional issue which is important to account for is noise - the effect of noise can not

be thought of as simply as the local-minima issue, because different realizations of noise might

effect the spectra and the resulting inversions in very different ways. To combat this issue, the

best possible solution is to invert more spectra, so that a statistical analysis of the distributions of

parameters from many spectra will reduce the effect of noise. We used the measured noise level of

Hinode’s spectropolarimeter for the χ2 calculations, to look for optimal values of χ2 (χ2 ≈ 1), and

to not overfit the noisy data.
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Figure 3.4: Maps of inverted temperatures at log τ = 0 (right) and calculated χ2 (left) for increasing
rounds of median filtering.



Chapter 4

Analysis

4.1 Filtering & Clustering

In order to characterize the differences in the atmospheric structure between years, it’s first

useful to separate and partition the data (i.e. pixels), so that the differences between similar parts

of the solar photosphere can be more directly compared. In the context of a study of the solar

photosphere of the quiet, non-magnetic, Sun, some useful partitions naturally emerge. The first is

between magnetic and non-magnetic pixels, so that non-magnetic pixels can be filtered out and we

can focus the analysis on the pixels where the variations of the line shapes comes from the changes

of the thermodynamic parameters only. Next, we separate the granules and intergranules - this is

because we expect granules and intergranules to have different depth stratification of the physical

parameters. Additionally, we expect that differences between spectra of a single dataset are much

larger than differences in those properties between years. For instance, we expect temperature

or velocity structures in granules and intergranules to be significantly different, while differences

in averages over the photosphere might change by only a percent or less throughout the solar

magnetic cycle. Therefore, it’s useful to separate spectra into groups where there are similar

physical processes going on - here, granules and intergranules. This means we need a way to

reliably separate data into groups, and a way to verify it.
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4.1.1 Filtering Pixels with Magnetic Field

Since the data sets are selected with strict requirements to not have any large-scale magnetic

elements, the magnetic pixels that are left are typically in smaller patches of weaker magnetic signal,

which makes them harder to identify. Being able to reliably separate out non-magnetic pixels from

magnetic ones allows us to ensure the pixels left are quiet Sun - however, weak magnetic fields

and unresolved magnetic fluxes make this a challenging issue. For the Milne-Eddington Inversion,

filtering out magnetic pixels is tricky - this is because the form of the ME model used in this

project is the original Milne-Eddington formulation designed for non-magnetic spectral lines, and

so it has no way of concluding magnetic fields from inverted spectral lines. This means we needed

to determine and test a proxy for the magnetic field strength.

Figure 4.1: The Stokes V spectra of the two boxed pixels.

In practice, it becomes more complicated: the four Stokes components are have both sys-

tematic and random noise in them. Since weak magnetic fields produce light with only small

differences between polarization states, the signal-to-noise ratio in Stokes Q, U, and V can often

be very small. The solution developed for this project is to sum the absolute value of the observed

signal over Stokes Q, U, and V, and then set a threshold depending on the relative signal-to-noise
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of the data, so that pixels with sufficiently strong magnetic fields can be filtered out and any below

that threshold can be left behind:

∑
λ

|Qλ|+ |Uλ|+ |Vλ|. (4.1)

Once this has been done for every pixel in a dataset, we obtain a map of the magnetic pixels,

which can be used in order to exclude pixels where the magnetic field is too strong. The result of

this filtering can be seen in the left panel in figure 4.2.

For the SIR inversions, implementing a filter is easier - this is because SIR includes the

magnetic field directly in the atmospheric model and infers it from the spectral line polarization.

This means that the code includes magnetic field strengths as a free parameter when inverting

spectra, and filtering out magnetic pixels is as easy as setting a threshold in magnetic field strength

and setting aside any pixels above that threshold. When comparing the two methods, there is

strong agreement, meaning that the Polarization Threshold Method is a good proxy for magnetic

field strength. For this project, we settled on a magnetic threshold of 250 Gauss, as inverted by SIR.

In the spectra that SIR identified to have a magnetic field stronger than 250 Gauss, the polarization

threshold method agreed for 90% of them.

4.1.2 K-Means Clustering

In order to partition data into granules and intergranules, a few different methods were tried,

before landing on the final solution of K-Means clustering. At first, like the magnetic fields in

the Milne-Eddington model, we searched for a proxy of granules or intergranules that is directly

measurable, or easily estimated from the observed spectra. The clearest candidate is line-of-sight

velocity; we expect granules to be moving upward in the solar atmosphere, since they’re hotter

and more buoyant, and intergranules to be moving downward. At the center of the solar disk, this

corresponds to positive and negative line-of-sight (LOS) velocities respectively, which should be

observable by Doppler shifts in atomic line spectra. In practice, however, we quickly learned that

a combination of velocity gradients throughout the photosphere and limited spatial resolution of
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Figure 4.2: Comparing the two methods of filtering magnetic fields: on the left is the polarization
threshold method created for the ME model as a proxy for magnetic field strength; on the right
is the directly inverted magnetic field from SIR. The color bars have been adjusted to show the
similarity of features between the two.

observations mean that using the Doppler shift as a proxy for granules and intergranules does work

in some pixels, but not as reliably as desired.

Although using LOS velocities directly was not a reliable enough proxy for granules and

intergranules, we still wanted a way to divide these two directly from the spectra, not from inverted

parameters; this is because the more directly we can conclude this from observables, the less

uncertainty we introduce by subsequent methods or inversions. To do this, we clustered the spectra

using K-Means clustering. This is an algorithm for vector clustering developed in 1967 for signal

processing by J. Macqueen [1967]. By treating each spectra from the Hinode data as a vector in

the wavelength dimension, it’s possible to apply K-Means clustering to each dataset, and let the

algorithm identify small, sometimes imperceptible similarities between spectra. By configuring the

algorithm correctly, K-Means clustering reliably and quickly clusters the data spatially into granules

and intergranules. To implement it this project, we used a python version of the algorithm from the

scikit-learn [Pedregosa et al., 2011] package. For configuration, we noticed that the pixels which

fall in-between granules and intergranules often confuse the code when clustering into only two

groups. For this reason, we used three K-Means groups: granules, intergranules, and in-between

regions; having an in-between cluster allows for the algorithm to more reliably sort spectra into



25

granules and intergranules, because it has a cluster for pixels in-between either of the other two

groups. Also, physically, we do expect some pixels to fall somewhere between the granules and

intergranules as spatially, there is no sharp boundary between the two.

Figure 4.3: Comparing K-Means Clustering and LOS Velocities. K-Means clusters on the left;
Inverted LOS velocities on the right. The structures and groupings are similar between both
graphs.

To verify the K-Means clustering, we compare the resulting clusters to LOS-velocities. Al-

though, as described above, LOS velocities are not a perfect proxy of granules or intergranules,

the two does correspond fairly strongly (Fig. 4.3). By applying K-Means clustering to datasets,

it allows us to compare changes in the inverted parameters between granules and intergranules

separately over the solar cycle.

4.2 Comparing SIR Inversions to an Independent Inversion Results

With inversions, there’s always the lingering question of with what confidence can we conclude

inverted parameters as being representative of physical conditions on the Sun. Because of this,

carefully analyzing error and scrutinizing the inferred parameters is especially important. With

that in mind, we’ve selected and inverted a dataset that was published in Socas-Navarro [2011]

using the NICOLE inversion code [Socas-Navarro et al., 2015], with the goal of comparing if inverted
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parameters agree.

Figure 4.4: Comparing the average temperature between inversion methods. Blue is SIR, yellow is
NICOLE inversion of the same dataset.

A few things are important to note about the NICOLE inversion: first, like SIR, NICOLE

inverts depth-stratified parameters, but it’s clear from the inverted temperature in Fig. 4.4 that the

particulars of how the code fits those parameters is different. The way of parametrizing the depth

dependence (so called-nodes), is different between the two codes: NICOLE uses linear interpolation

while SIR uses higher degree polynomials. The mean temperature stratification is similar in the

range where our spectral line is predominantly formed (log τ = 0 to -2), but the differences still

exist. Outside of the line formation region, the differences are more significant.

Despite the general agreement between inverted temperatures of SIR and NICOLE, using

this NICOLE inversion to test any of the other properties we focus on for this project, like the

temperature gradient, is not as straightforward. Because the two inversion codes disagree by up to

a couple hundred Kelvin, the temperature gradients between two depth points can disagree by a

few hundred Kelvin. This is an important point on it’s own: our measurement of the temperature,

as well as other physical parameters, is not only determined by the accuracy and the resolution of
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the data, but also by the interpretation method itself. In this case, different inversion codes contain

different physics and different numerical solutions and thus yield different inferred values. This is

an important caveat to have in mind, and a large-scale research of this kind should double-check

all the results using multiple inversion codes, which is a task that has not yet been accomplished,

at least not according to the well-known inversion literature.



Chapter 5

Results

For this project, we focus on two quantities in particular to compare between the years:

the temperature gradient, and the line-of-sight velocity - although changes in multiple parameters

are discussed below. Note that Milne-Eddington and SIR inversion are fundamentally different.

First one parametrizes the atmosphere in terms of the analytical expression 2.6, where most of the

quantities are depth-independent, while the latter infers depth-dependent temperature, velocity

and the magnetic field. Additionally, we are separating the solar surface in two different features:

granules and intergranules. Therefore, we will qualitatively compare the quantities that describe

the same features, obtained by the same inversion approach, between the two stages of the solar

cycle: a minimum (2008) and a maximum (2014).

5.1 Temperature Gradient

The temperature gradient is the difference in photospheric temperatures between two optical

depths. In the Milne-Eddington model, the source function gradient, a1, is constant in the photo-

sphere. Milne-Eddington source function is related to the temperature, although the conversion is

not straightforward and perhaps not even physically meaningful. We still expect the temperature

gradient to be loosely related to the source function gradient, allowing us to compare them - at least

qualitatively - between inversions. Additionally, using the above method of K-Means clustering, we

are able to analyze differences of these parameters between the granules and intergranules. We first

analyze the source function gradient, a1, from Milne-Eddington inversions. Like mentioned above,
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we expect differences in physical structure between the granules and intergranules in a single year

to be much larger than the differences in overall structure between years. Due to this, when we

compare the distributions of the source function gradient over all spectra, between the two years,

the difference is tiny - the differences in means are less than a percent which is too small to conclude

that the differences are statistically significant between the years (Fig. 5.1). The distribution is,

however, noticeably broader during the solar minimum.

Figure 5.1: Inverted Milne-Eddington Source Function Gradient, of all spectra. Dashed lines denote
the mean values of the two distributions.

Next, we’ve separated the inverted parameters between granules and intergranules, with the

distributions shown in Fig. 5.2. What’s immediately apparent and interesting is that the small, less

than a percent difference mentioned above in the average source function gradient is due almost

entirely to the spectra we have classified as the granules. The difference between the mean source

function gradient in the granules is 5.5%, while in the intergranules the difference is just a bit more

than 1%, but interestingly, in the opposite direction than the granules.

Next, we discuss the temperature gradient from the SIR inversions. This one is a bit more

complicated than the source function gradient: in the ME model, the source function is linear
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Figure 5.2: Inverted Milne-Eddington source function gradient, in granules (left), and intergranules
(right)

and so its gradient had only one value for a given spectrum, independent of height. In the SIR

atmosphere, we have a depth-stratified temperature, and so the gradient can be, in principle, defined

as a difference between any two depths. For the spectral line we are considering here, the depths

where conditions of the photosphere strongly influence the line profile are in the range of log(τ) =

0 to -2. We chose to show three different temperature gradients, between paired optical depths (0

and -1), (0 and -2), and finally (-1 and -2).

Below are the gradients in inverted temperatures obtained by applying SIR to the two selected

datasets from 2008 and 2014. Although shapes and tail distributions change slightly between optical

depths, an important feature of all three graphs is in the differences of distributions between the

granules and the intergranules. Like in the Milne-Eddington inversion, we see that the difference

in parameters is largely due to the spectra clustered as granules. Additionally, we see that the

differences between the two datasets follow a similar trend to the ME inversion: the temperature

gradient is similar in the intergranules, but is noticeably higher in 2008 in granules.

In the SIR inversion, the amount of difference depends on the optical depths chosen - between

log(τ) = 0 and -1, the difference in the means of the temperature gradient is 4.8%. This difference

in the means is less for other optical depths, but, interestingly, shows the same patterns in overall

distributions: the difference in granules is always larger than in intergranules, and 2008 always has
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Figure 5.3: Temperature gradient between different pairs of optical depths. From top to bottom,
the graphs show temperature gradients between log(τ) = 0 and -1; 0 and -2; and -1 and -2, in
granules (left) and intergranules (right).

a higher temperature gradient, regardless of depths chosen (Fig. 5.3).
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5.2 Line-of-Sight Velocity

Similar to the case temperature gradients, SIR provides us with height-stratified line-of-sight

velocities, while Milne-Eddington estimates some sort of a mean velocity in the line forming region.

Because the two are describing related but fundamentally distinct quantities, we again can only

compare them qualitatively.

For ME inverted line-of-sight velocity, like in the source function gradient, there is a noticeable

difference in the distributions of inverted parameters between granules and intergranules, as seen in

Fig. 5.4. In granules, like expected, the mean values are negative, since this corresponds to motion

upward in the solar photosphere. Similarly, in intergranules, the mean values are positive. Between

years, 2008 shows slightly more extreme line-of-sight velocities, in both granules and intergranules.

Finally, differences in means between 2008 and 2014 are a little larger in the granules than in the

intergranules.

Figure 5.4: Inverted Milne-Eddington Line-of-Sight velocities, in granules (left), and intergranules
(right), in km/s.

For line-of-sight velocities inverted from SIR, we compare distributions at optical depths of

log(τ) = 0, -1, and -2. These are found in Fig. 5.5. Notably, mean line-of-sight velocities are similar

throughout the photosphere between years, but show significant differences in granules at log(τ) =

0. At this optical depth, the granules have a larger difference in mean line-of-sight velocity, and the

difference between the mean line-of-sight velocities of granules and intergranules is larger in 2008.
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This agrees qualitatively with the ME inversions.

The qualitative agreement between these two inverted parameters from the Milne-Eddington

model and SIR model is significant. For the temperature gradient and the line-of-sight of sight

velocity, this is especially true, because of how these parameters are determined. Temperature and

source function gradients are determined entirely by the depth of the spectral line. Line-of-sight

velocities and velocity gradients are entirely determined by the shift and asymmetry of the spectral

line. This means that these two parameters are orthogonal and are determined independent to a

large degree. The agreement between ME and SIR inversions of these parameters is therefore not

an effect of the inversions or data-processing steps. These are results which independently agree

with one another, since they’re determined in unique ways which do not influence one another.
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Figure 5.5: Inverted Line-of-Sight velocities by SIR at optical depths of log(τ) = 0, -1, and -2 in
intergranules (left) and granules (right), in km/s.



Chapter 6

Conclusion

In this project, we search for changes in the photospheric structure of Sun across solar cycle

24 through spectropolarimetric inversions of Hinode data. To do this, we used two inversion codes:

a simple Milne-Eddington model and SIR, a more complicated, height-stratified inversion code. By

applying both inversion codes to the same datasets, we hope to determine whether a simple Milne-

Eddington model was sufficient to find changes in concluded parameters - notably, the source

function and temperature gradients, as well as the line-of-sight velocity - and whether the two

models agreed qualitatively in these parameters.

From our results (5), it’s clear that both the Milne-Eddington and SIR inversions have iden-

tified and characterized changes in parameters between a minimum and maximum of the solar-

magnetic cycle. Additionally, both inversions agree on the signs and trends of these changes, both

between years and between granules and intergranules. Whether or not these results correspond to

physical changes in the Sun due to the solar cycle is more difficult to say. This is due to additional

sources of uncertainty, like possible instrument degradation from 2008 to 2014 or in the K-Means

clustering of the data, as well as limited samples from only the solar minimum and maximum. Be-

cause of reasons like these, we can’t confirm with certainty that the changes we have found directly

correspond to changes in the photosphere. In order to claim this and further confirm these results,

inversions of additional datasets from more years throughout the solar cycle as well as independent

confirmation from other methods would be required.

Our results imply that the simple model of Milne-Eddington inversions is sufficient in order
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to characterize changes of parameters in the quiet Sun, notably the source function gradient and

line-of-sight velocity. The Milne-Eddington inversion designed for this project agreed with the

more complicated SIR model in distributions and changes these two parameters between quiet-Sun

datasets from 2008 and 2014.

6.1 Future Work

Considering that we have seen changes in inverted photospheric parameters, we hope to

continue our project in a couple distinct ways. First, we want to invert larger subsections of the

selected datasets from 2008 and 2014. With more inverted spectra, we will be able to better

characterize the distributions and changes of parameters. Next, we plan to extend this method to

more datasets from throughout the solar magnetic cycle. By doing this, we hope to characterize

systematic and gradual changes in parameters, not just overall changes between a dataset from the

solar minimum and maximum.
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